Let $q = e^{-2\pi}$. We are familiar with Ramanujan's beautiful continued fraction,
$$\cfrac{q^{1/5}}{1 + \cfrac{q} {1 + \cfrac{q^2} {1 + \cfrac{q^3} {1+\ddots}}}} = {\sqrt{5+\sqrt{5}\over 2}-{1+\sqrt{5}\over 2}} = 5^{1/4}\sqrt{\phi}-\phi$$
Let $q = e^{-\pi\sqrt{11}}$. Using Ramanujan's octic continued fraction, I found that,
$$\cfrac{\sqrt{2}\,q^{1/8}}{1 + \cfrac{q} {1 +q+ \cfrac{q^2} {1 + q^2+\cfrac{q^3} {1+q^3+\ddots}}}} = \left(\frac{1}{2}-\frac{1}{4}\sqrt{\frac{4v+7}{4v-7}}\right)^{1/8}$$
where $v = T+4$, and $T$ is the tribonacci constant. More simply,
Let $q = -e^{-\pi\sqrt{11}}$. Using the Heine continued fraction, then,
$$\cfrac{(-q)^{-1/24}} {1 + \cfrac{q} {1-q + \cfrac{q^3-q^2} {1 + \cfrac{q^5-q^3} {1 + \cfrac{q^7-q^4} {1+\ddots}}}}} = \frac{1}{T}+1$$
Q: Going higher, is there a $q$-continued fraction for the tetranacci constant, or the positive root of $x^4-x^3-x^2-x-1=0$?