I am struggling with this question:
Let $\{a_n\}$ be defined recursively by $a_1=\sqrt2$, $a_{n+1}=\sqrt{2+a_n}$. Find $\lim\limits_{n\to\infty}a_n$. HINT: Let $L=\lim\limits_{n\to\infty}a_n$. Note that $\lim\limits_{n\to\infty}a_{n+1}=\lim\limits_{n\to\infty}a_n$, so $\lim\limits_{n\to\infty}\sqrt{2+a_n}=L$. Using the properties of limits, solve for $L$.
I just don't know how I am suppose to find the limit of that or what my first step is. Any help?