Put $a_1b_2-a_2b_1=:d_3$, and define $d_1$, $d_2$ similarly. If $d_3\ne0$ the map
$$T:\quad (x,y)\mapsto\left\{\eqalign{u&:=a_1x+b_1 y\cr v&:=a_2x+b_2 y\cr}\right.\tag{1}$$
maps the $(x,y)$-plane bijectively onto the $(u,v)$-plane. It's inverse computes to
$$T^{-1}:\quad (u,v)\mapsto\left\{\eqalign{x&={1\over d_3}(b_2u-b_1v)\cr y&={1\over d_3}(-a_2u+a_1v)\cr}\right.\ .\tag{2}$$
The triangle $\triangle$ in question is mapped onto a triangle $\triangle'$, two of whose sides are given by $$g_1':\quad u=-c_1,\qquad g_2':\quad v=-c_2\ ,$$
which implies $$A_3'=g_1'\wedge g_2'=(-c_1,-c_2)\ .$$ In order to obtain the $(u,v)$-equation of the third side $g_3'$ of $\triangle'$ we have to plug $x$ and $y$ from $(2)$ into the third equation $a_3x+b_3y+c_3=0$. After multiplication with $d_3$ this results in
$$a_3(b_2u-b_1v)+b_3(-a_2u+a_1v)+c_3d_3=0\ ,$$
or
$$g_3':\quad d_1 u+d_2 v=c_3 d_3\ .$$
In this way we obtain
$$A_1'=g_2'\wedge g_3'=\left( {1\over d_1}(c_2d_2+c_3d_3),-c_2\right),\quad A_2'=g_1'\wedge g_3'=\left(-c_1, {1\over d_2}(c_1d_1+c_3d_3)\right)\ . $$
Now the side $A_1'A_3'$ of $\triangle'$ is horizontal and has length
$$|A_1'\>A_3'|= \left|{1\over d_1}(c_2d_2+c_3d_3)+c_1\right|={|\Delta|\over|d_1|}\ ,$$
where $\Delta:=c_1d_1+c_2d_2+c_3d_3$. Similarly the side $A_2'A_3'$ of $\triangle'$ is vertical and has length
$$|A_2'\>A_3'|= {|\Delta|\over|d_2|}\ .$$
It follows that the area of $\triangle'$ comes to
$${\rm area}(\triangle')={1\over2}{\Delta^2\over |d_1d_2|}\ .$$
In order to obtain ${\rm area}(\triangle)$ we have to multiply this by $\bigl|\det T^{-1}\bigr|={\displaystyle{1\over |d_3|}}$. The final result then is
$${\rm area}(\triangle)={1\over2}{\Delta^2\over |d_1d_2d_3|}\ ,$$
as given here.