1

How to evaluate the limit as $x\to0$ of

$$\biggl(\,\sum_{r=1}^{r=n}r^{1/\sin^2x}\biggr)^{\!\sin^{2}x}$$

  • 1
    Any thoughts on how to approach this problem? Evidently $n$ is to be some fixed positive integer. Start by considering $n=1$ if you need a concrete case to suggest approaches. – hardmath Jun 26 '15 at 13:32

1 Answers1

5

Let $p=\frac{1}{\sin^2 x}$. As $x\to 0^+$, $p\to +\infty$, and: $$ \left(\sum_{r=1}^{n} r^p\right)^{1/p}=\|(1,2,\ldots,n)\|_p \to \max(1,2,\ldots,n)=n.$$

Jack D'Aurizio
  • 361,689