How to evaluate the limit as $x\to0$ of
$$\biggl(\,\sum_{r=1}^{r=n}r^{1/\sin^2x}\biggr)^{\!\sin^{2}x}$$
How to evaluate the limit as $x\to0$ of
$$\biggl(\,\sum_{r=1}^{r=n}r^{1/\sin^2x}\biggr)^{\!\sin^{2}x}$$
Let $p=\frac{1}{\sin^2 x}$. As $x\to 0^+$, $p\to +\infty$, and: $$ \left(\sum_{r=1}^{n} r^p\right)^{1/p}=\|(1,2,\ldots,n)\|_p \to \max(1,2,\ldots,n)=n.$$