Consider the more general integral
\begin{align}
I_{n} = \int_{0}^{\infty} t \, e^{-b t^{2}} \, J_{n}(a t) \, dt
\end{align}
for which
\begin{align}
I_{n} &= \sum_{k=0}^{\infty} \frac{(-1)^{k} \, \left(\frac{a}{2}\right)^{2k+n}}{k! \, \Gamma(k+n+1)} \cdot \int_{0}^{\infty} e^{- b t^{2}} \, t^{2k+n+1} \, dt \\
&= \frac{1}{2} \, \sum_{k=0}^{\infty} \frac{(-1)^{k} \, \left(\frac{a}{2}\right)^{2k+n}}{k! \, \Gamma(k+n+1)} \, \frac{\Gamma\left(k + \frac{n+2}{2}\right)}{b^{k+n/2 +1}} \\
&= \frac{\Gamma\left(\frac{n+2}{2}\right) \, (a/2)^{n}}{2 \, \Gamma(n+1) \, b^{n/2+1}} \, {}_{1}F_{1}\left(\frac{n}{2}+1; n+1; - \frac{a^{2}}{4b} \right) \\
&= \frac{\Gamma\left(\frac{n+1}{2}\right) \, \left(\frac{a}{\sqrt{b}}\right)^{n}}{2 \sqrt{\pi} \, b} \, {}_{1}F_{1}\left(\frac{n}{2}+1; n+1; - \frac{a^{2}}{4b} \right)
\end{align}
or
\begin{align}
\int_{0}^{\infty} t \, e^{-b t^{2}} \, J_{n}(a t) \, dt = \frac{\Gamma\left(\frac{n+1}{2}\right) \, \left(\frac{a}{\sqrt{b}}\right)^{n}}{2 \sqrt{\pi} \, b} \, {}_{1}F_{1}\left(\frac{n}{2}+1; n+1; - \frac{a^{2}}{4b} \right)
\end{align}
When $n=0$ the reduction is
\begin{align}
\int_{0}^{\infty} t \, e^{-b t^{2}} \, J_{0}(a t) \, dt = \frac{1}{2 b} \, {}_{1}F_{1}\left(1; 1; - \frac{a^{2}}{4b} \right) = \frac{1}{2b} \, e^{-\frac{a^{2}}{4b}}
\end{align}
Now let $b \to -ib$ to obtain
\begin{align}
\int_{0}^{\infty} t \, e^{ib t^{2}} \, J_{0}(a t) \, dt = \frac{i}{2 b} \, e^{i\frac{a^{2}}{4b}}
\end{align}