Let $M=\max_{x\in[a,b]}f(x)$. By assumption, $M>0$. Choose $x_{0}\in[a,b]$
such that $M=f(x_{0})$. By continuity, there exists $\delta>0$ such
that $f(x)>\frac{M}{2}$ for whenever $x\in[x_{0}-\delta,x_{0}+\delta]$
(If $x_{0}=a$ or $x_{0}=b$, we modify the interval in an obvious
way). For each $n\in\mathbb{N}$, Observe that $\int_{a}^{b}f^{n}(x)dx\geq\int_{x_{0}-\delta}^{x_{0}+\delta}(\frac{M}{2})^{2}dx=2\delta(\frac{M}{2})^{n}>0$.
Therefore, $\frac{\int_{a}^{b}f^{n+1}(x)dx}{\int_{a}^{b}f^{n}(x)dx}$
is well-defined.
We go to show that $\frac{\int_{a}^{b}f^{n+1}(x)dx}{\int_{a}^{b}f^{n}(x)dx}\rightarrow M$
as $n\rightarrow\infty$. Firstly, we prove under the assumption that
$M=1$. Clearly, $f^{n+1}(x)\leq f^{n}(x)$, so $\int_{a}^{b}f^{n+1}\leq\int_{a}^{b}f^{n}$.
Therefore, $\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}\leq1$.
In particular, $\limsup_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}\leq1$.
Let $\alpha\in(0,1)$ be arbitrary. Let $A=\{x\in[a,b]\mid f(x)>\alpha\}$,
then $\mu(A)>0$ (i.e., the Lebesgue measure of $A$ is positive)
because $f$ is continuous. We have that $\int_{a}^{b}f^{n+1}\geq\int_{A}f^{n+1}\geq\int_{A}\alpha f^{n}$.
Therefore,
\begin{eqnarray*}
\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}} & \geq & \frac{\alpha\int_{A}f^{n}}{\int_{A}f^{n}+\int_{A^{c}}f^{n}}\\
& \geq & \frac{\alpha\int_{A}f^{n}}{\int_{A}f^{n}+\alpha^{n}(b-a)}.\\
& = & \alpha\frac{1}{1+\frac{\alpha^{n}(b-a)}{\int_{A}f^{n}}}.
\end{eqnarray*}
We assert that $\frac{\alpha^{n}}{\int_{A}f^{n}}\rightarrow0$ as
$n\rightarrow\infty$. Choose $\beta\in(\alpha,1)$.
Let $B=\{x\in[a,b]\mid f(x)>\beta\}$, then $\mu(B)>0$. Observe that
$B\subseteq A$, so $\int_{A}f^{n}\geq\int_{B}f^{n}\geq\mu(B)\beta^{n}$.
It follows that $\frac{\alpha^{n}}{\int_{A}f^{n}}\leq\frac{\alpha^{n}}{\mu(B)\beta^{n}}\rightarrow0$
as $n\rightarrow\infty$. Now, it is clear that
\begin{eqnarray*}
\liminf_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}} & \geq & \liminf_{n}\alpha\frac{1}{1+\frac{\alpha^{n}(b-a)}{\int_{A}f^{n}}}\\
& = & \alpha.
\end{eqnarray*}
Since $\alpha\in(0,1)$ is arbitrary, we actually have $\liminf_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}\geq1$.
Combining, we have $\liminf_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}=\limsup_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}=1$.
This shows that $\lim_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}=1$.
Finally, we drop the assumption that $M=1$. Let $g(x)=\frac{1}{M}f(x)$,
then $g$ satisfies all the conditions in above with $\max g=1$.
Therefore $\lim_{n}\frac{\int_{a}^{b}g^{n+1}}{\int_{a}^{b}g^{n}}=1$
and it follows that $\lim_{n}\frac{\int_{a}^{b}f^{n+1}}{\int_{a}^{b}f^{n}}=M.$