Method 1 :
$$\displaystyle I=\int _{ 0 }^{ 1 }{ \ln\bigg(\frac { 1+x }{ 1-x } \bigg)\frac { dx }{ x\sqrt { 1-{ x }^{ 2 } } } }$$
- We know $\color{red}{\ln\left(\frac{1+x}{1-x}\right)=2\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}}$
Above result obtained from Taylor Series
$$I=2\sum_{n=0}^\infty\frac{1}{2n+1}\int_0^1\frac{x^{2n}}{\sqrt{1-x^2}}\,dx$$
- We know $\color{red}{2\int_0^1 \frac{x^{2n}}{\sqrt{1-x^2}}\,dx=\frac{\pi}{4^n} \binom{2 n}{n}}$
Substitute $\sin\theta=x$ and apply Walli's product to derive above result
$$I=\pi \overset{S}{\overbrace{{\sum_{n=0}^\infty\frac{1}{4^n(2n+1)}\binom{2 n}{n}}}}$$
Consider,
$$S=\frac{1}{\sqrt{1-4x^2}} = \sum_{n=0}^\infty \binom{2n}n x^{2n}$$
$$\implies\int\frac{1}{\sqrt{1-4x^2}}\,dx=\sum_{n=0}^\infty \binom{2n}n \int x^{2n}\,dx$$
$$\implies\frac{1}{2}\arcsin(2x)=\sum_{n=0}^\infty \binom{2n}n \frac{x^{2n+1}}{2n+1}$$
$$\implies\frac{1}{2x}\arcsin(2x)=\sum_{n=0}^\infty \binom{2n}n \frac{x^{2n}}{2n+1}$$
$$\underset{x=\frac12}\implies\frac{\pi}{2}=\sum_{n=0}^\infty \binom{2n}n \frac{1}{4^n(2n+1)}$$
$$\therefore \boxed{I=\frac{\pi^2}{2}}$$
Method 2 :
- $\frac { 1+x }{ 1-x }\to e^x$
$$I=4\int _{ 0 }^{ \infty }\frac{x}{e^x-e^{-x}}\,dx$$
$$\color{blue}{\displaystyle \zeta (s,a)\,\Gamma (s)=\int _{0}^{\infty }{\frac {x^{s-1}e^{-ax}}{1-e^{-x}}}dx\tag1}$$
$$I=4\int _{ 0 }^{ \infty }\frac{x\,e^{-x}}{1-e^{-2x}}\,dx$$
$$I=\int _{ 0 }^{ \infty }\frac{x\,e^{-\frac{x}{2}}}{1-e^{-x}}\,dx$$
From $(1)$, set $s=2, a=\frac12$
$$\therefore \boxed{I=\zeta \left(2,\frac12\right)\,\Gamma (2)=\frac{\pi^2}{2}}$$