The palindrome condition given is a special case of a sequence of positive integers $\{a_i\}_{i=0}^n$ that satisfies
$$
N = \sum_{i=0}^n a_i 10^i = \sum_{i=0}^n a_i 16^{n-i}
$$
In this case it follows that
$$
a_0 = \frac{\sum_{i=1}^n a_i\left(10^i-16^{n-i}\right)}{16^n-1}
$$
Then we can write
$$
\begin{align}
N & = a_0 + \sum_{i=1}^n a_i 10^i \\
& = \sum_{i=1}^n a_i \left(10^i+\frac{10^i-16^{n-i}}{16^n-1}\right) \\
& = \frac{1}{16^n-1} \sum_{i=1}^n a_i \left(16^n10^i-16^{n-i}\right) \\
& = \frac{1}{16^n-1} \sum_{i=1}^n a_i 16^{n-i}\left(160^i-1\right)
\end{align}
$$
Since $159 \mid 160^i-1$ for every $i\ge 0$, and $\operatorname{ord}_{53} 16 = \operatorname{ord}_{53} 10 = 13$, then if $13 \nmid n$ we must have $53 \mid N$.
Of course this generalizes to bases $B_1,B_2$. If
$$
N = \sum_{i=0}^n a_i B_1^i = \sum_{i=0}^n a_i B_2^{n-i}
$$
then we can write
$$
N = \frac{1}{B_2^n-1}\sum_{i=1}^n a_i B_2^{n-i} \left((B_1B_2)^i-1\right)
$$
and similarly
$$
N = \frac{1}{B_1^n-1}\sum_{i=0}^{n-1} a_i B_1^i \left((B_1B_2)^{n-i}-1\right)
$$
and hence $N$ is divisible by
$$
\frac{B_1B_2-1}{\gcd(B_1B_2-1,B_1^n-1,B_2^n-1)}
$$
For example, we can find a similar pattern for palindromes in bases $10$ and $13$. $10\times 13-1 = 43\times 3$ and $\operatorname{ord}_{43} 10=21$, so for $0<n<21$ digits paired palindromes in these bases are divisible by $43$, e.g.
$$
43_{10} = 34_{13} \\
774_{10} = 447_{13} = 43 \times 18 \\
218870_{10} = 078812_{13} = 43 \times 5090
$$
For an example where the pattern breaks down, let $B_1=4,B_2=5$, then $B_1B_2-1 = 19$. Then we have
$$
1030_4 = 0301_5 = 19 \times 4 \\
1212020_ = 0202121_5 = 19 \times 344
$$
But $\operatorname{ord}_{19} 4=\operatorname{ord}_{19} 5=9$, so when $n=9$ we have $19 \mid \gcd(B_1^n-1,B_2^n-1)$ and it may get canceled. For example
$$
2103133210_4 = 0123313012_5 = 2^2 \times 89 \times 1697
$$