To integrate $x^\alpha$ when $\alpha\neq1$ we subdivide the interval $[a,b]$ by the point of geometric progression: $$a, aq, aq^2, \ldots, aq^{n-1}, aq^n=b$$ where $q=\sqrt[n]{b/a}$. We then only need to evaluate the sum of geometric series. Given the points of division $x_i=aq^i$ the length of the $i$-th cell is given by: $$\Delta x_i=aq^i-aq^{i-1}=aq^i(q-1)/q$$ The largest $x_i$ is the last: $$x_n=b(q-1)/q$$ For $n\rightarrow\infty$ the number $q$ tends to $1$ and hence the length $o$ $\Delta x_n$ of the largest cell and then also the lengths of all cells tend to zero. For the intermediate points $\xi_i$ we choose the right-hand endpoints $x_i$ of each cell. The sum $$F_n=\sum_{i=1}^n (\xi_i)^\alpha \Delta x_i=\sum_{i=1}^n (aq^i)^\alpha aq^i\frac{q-1}{q}=a^{\alpha+1} \frac{q-1}{q} \sum_{i=1}^n (q^{1+\alpha})^i$$
Now for $\alpha=-1$ we get $F_n=n(q-1)/q$. Observing that $q=\sqrt[n]{b/a}$ tends to $1$ as $n\rightarrow\infty$ we find:$$\int_a^b \frac 1x=\lim\limits_{n \to \infty}n\left(\sqrt[n]{b/a}-1\right)$$
How to evaluate this limit to get $\ln|a|-\ln|b|$?