Let $M=(a_{ij})_{n\times n}$ and $M'=(a'_{ij})_{n\times n}$. Recall
$$ \det M=\sum_{\sigma\in S_n}\text{sgn}(\sigma)\prod_{i=1}^na_{i,\sigma_i},\det M'=\sum_{\sigma\in S_n}\text{sgn}(\sigma)\prod_{i=1}^na'_{i,\sigma_i} $$
where $S_n$ is the set of all permutations of $\{1,2,\cdots,n\}$ and $\sigma_i=\sigma(i)$. Define $m=\max_{1\le i, j\le n}\{|a_{ij}|,|a'_{ij}|\}$. Then
\begin{eqnarray*}
\vert\det M-\det M'\vert&=&\bigg|\sum_{\sigma\in S_n}\text{sgn}(\sigma)(\prod_{i=1}^na_{i,\sigma_i}-\prod_{i=1}^na'_{i,\sigma_i})\bigg|\\
&\le&\sum_{\sigma\in S_n}\bigg|\prod_{i=1}^na_{i,\sigma_i}-\prod_{i=1}^na'_{i,\sigma_i}\bigg|\\
&=&\sum_{\sigma\in S_n}\bigg|a_{1,\sigma_1}a_{2,\sigma_2}\cdots a_{n,\sigma_n}-a'_{1,\sigma_1}a'_{2,\sigma_2}\cdots a'_{n,\sigma_n}\bigg|\\
&=&\sum_{\sigma\in S_n}\bigg|(a_{1,\sigma_1}-a'_{1,\sigma_1})a_{2,\sigma_2}a_{3,\sigma_3}\cdots a_{n,\sigma_n}+a'_{1,\sigma_1}(a_2-a'_{2,\sigma_2})a_{3,\sigma_3}\cdots a_{n,\sigma_n}\\
&&+a'_{1,\sigma_1}a'_{2,\sigma_2}(a_{3,\sigma_2}-a'_{3,\sigma_3})\cdots a_{n,\sigma_n}+\dots+a'_{1,\sigma_1}a'_{2,\sigma_2}a'_{3,\sigma_3}\cdots a'_{n-1,\sigma_{n-1}}(a_{n,\sigma_n}-a'_{n,\sigma_n})\bigg|\\
&\le&\sum_{\sigma\in S_n}\sum_{i=1}^nm^{n-1}|a_{i,\sigma_i}-a'_{i,\sigma_i}|.
\end{eqnarray*}
For $\forall \varepsilon>0$, for $\delta=\frac{\varepsilon}{2nn!m^{n-1}}$, let
$$ \|M-M'\|<\delta. $$
Then we have $|a_{i,j}-a'_{ij}|<\delta$ for all $1\le i,j\le n$ and hence
$$ |\det M-\det M'|\le\sum_{\sigma\in S_n}\sum_{i=1}^nm^{n-1}\delta=nn!m^{n-1}\delta=\frac{\varepsilon}{2}<\varepsilon. $$