Show $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is a simple extension field of $\mathbb{Q}$.
Since $\sqrt{2},\sqrt{3}\in \mathbb{Q}(\sqrt{2},\sqrt{3})$, and $\sqrt{2}\sqrt{3}=\sqrt{6}\in \mathbb{Q}(\sqrt{2},\sqrt{3})$, so $\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{6})$, hence $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is a simple extension field of $\mathbb{Q}$.
Does my argument right? The only information I have is : A field extension $E$ of $F$ is called a simple extension if $E = F(\alpha)$ for some $\alpha \in E$.