State the binomial expansion of $(1+x)^n$
So I can do this $$(1+x)^n=\sum_{i=0}^{n} {n\choose i}x^i$$
Then given $n=2k$ is even. Derive an expression for
$$\sum_{i=0}^{2k} (-1)^i{2k\choose i}$$ this is where I am stuck cause this is the same as above with $x=-1$ so is the answer just $$(1+(-1))^{2k}=\sum_{i=0}^{2k} {2k\choose i}(-1)^i=0^{2k}=0 ~\forall k\in \mathbb{N}$$?