We can use Abel's theorem for the proof. Suppose the two series $\sum_{n=0}^\infty a_n$ and $\sum_{n=0}^\infty b_n$ are condtionally but not absolutely convergent. For $\lvert x\rvert < 1$, we define
$$f(x) = \sum_{n=0}^\infty a_n x^n\quad \text{and}\quad g(x) = \sum_{n=0}^\infty b_n x^n.$$
By Abel's theorem, we have
$$\lim_{x\to 1^-} f(x) = \underbrace{\sum_{n=0}^\infty a_n}_A\quad\text{and}\quad \lim_{x\to 1^-} g(x) = \underbrace{\sum_{n=0}^\infty b_n}_B,$$
and therefore, with $h(x) = f(x)\cdot g(x)$,
$$\lim_{x\to 1^-} h(x) = A\cdot B.$$
The coefficients in the Power series expansion of $h$ are the terms of the Cauchy product of the two series,
$$h(x) = \sum_{n=0}^\infty c_n x^n, ~ \text{ where } c_n = \sum_{k=0}^n a_k b_{n-k}.$$
We denote the partial sums of $\sum c_n$ by $s_n$, and define
$$H(x) = \sum_{n=0}^\infty s_n x^n.$$
Assuming that we had $s_n \to +\infty$, for every $M \in \mathbb{R}^+$, there is an $N_M$ such that $s_n \geqslant M$ for all $n \geqslant N_M$. Then for $0 < x < 1$ we have
$$H(x) = \sum_{n < N_M} s_nx^n + \sum_{n=N_M}^\infty s_n x^n \geqslant \sum_{n < N_M} s_n x^n + \frac{x^{N_M}\cdot M}{1-x},$$
and hence
$$\liminf_{x\to 1^-} (1-x)H(x) \geqslant M.$$
But - setting $s_{-1} = 0$ - we have
$$h(x) = \sum_{n=0}^\infty c_n x^n = \sum_{n=0}^\infty (s_n -s_{n-1}) x^n = \sum_{n=0}^\infty s_n x^n - \sum_{n=1}^\infty s_{n-1}x^n = (1-x)H(x),$$
and so the assumption $s_n \to +\infty$ contradicts the fact that
$$\lim_{x\to 1^-} h(x) = A\cdot B.$$