Let $g$, $\{g_n\}$ be integrable and $f$, $\{f_n\}$ be measurable. Suppose $\mid{f_n}\mid\le{g_n}$ and $f_n\to f \ a.e$ and $\lim_{n \to \infty} \int{g_n}=\int g$. Show that $\lim_{n \to \infty} \int | f_n-f| =0$.
I will use dominated convergence theorem. But I can't find the dominating function.