My task: find approximate solution as $$y = y_0(x) + y_1(x)\lambda + y_2(x)\lambda^2 + y_3(x)\lambda^3$$ of differential equation $$y' = \sin x + \lambda e^y, y(0)=1-\lambda. \ \ \ \ (*)$$ My attempt :
Let $$y(x,\lambda) = y_0(x) + y_1(x)\lambda + y_2(x)\lambda^2 + y_3(x)\lambda^3.$$ Then $$ y_0(x) = y(x,0)$$ $$y_1(x) =\frac{ \partial y(x,\lambda)}{\partial \lambda}_{\lambda = 0}$$ $$y_2(x) =\frac{1}{2}\frac{ \partial^2y(x,\lambda)}{\partial \lambda^2}_{\lambda = 0}$$ $$y_3(x) =\frac{1}{6}\frac{ \partial^3y(x,\lambda)}{\partial \lambda^3}_{\lambda = 0}$$
And
$$ y_0'(x) = y'_x(x,0)$$ $$y_1'(x) =\frac{ \partial}{\partial \lambda}y'_x(x,\lambda)_{\lambda = 0}$$ $$y_2'(x) =\frac{1}{2}\frac{ \partial^2}{\partial \lambda^2}y'_x(x,\lambda)_{\lambda = 0}$$ $$y_3'(x) =\frac{1}{6}\frac{ \partial^3}{\partial \lambda^3}y'_x(x,\lambda)_{\lambda = 0}$$
After that, using (*), i got $$y_0'(x)= sin x$$ $$y_1'(x)=e^{(y_0)}$$ $$y_2'(x)=e^{(y_0)}y_1;$$ $$y_3'(x)=e^{(y_0)}(y_1^2+y_2)$$ And i stopped here. There isn't a solution in these integrals. Maybe, there is another solution of my task? Thanks

