I was wondering if the singular homology functor preserve injectivity and surjectivity? I've been trying to figure out a proof or counterexample for ages now and I just can't.
This came up when I was looking at the reduced homology $H_p(S^{n},S^{n-1})$. To calculate it, I have looked at the canonical injection $$\iota: S^{n-1} \longrightarrow S^{n}.$$ I'm viewing $S^{n-1}$ as the equator of $S^n$, in this case does the functor preserve injectivity? That is, I want to say that $\iota_*$ is injective. Is this true? Thanksarinos