I wonder how a CES function over a continuum of goods,
$$\left(\int_1^\infty c(\theta)^\delta g(\theta) \mathrm{d}\theta\right)^\frac{1}{\delta}$$
where $c(\theta), g(\theta)>0 \forall \theta\in\left[1,\infty\right)$, collapses to a minimum function in the limit as $\delta \to -\infty$.
I have seen the answer to a very similar question and below is my adaption of it to this problem:
First, let $\theta' \in \arg\min_{\theta\in\left[1,\infty\right)}c(\theta)$. Then,
\begin{align} \lim_{\delta \to -\infty} \left(\int_1^\infty c(\theta)^\delta g(\theta) \mathrm{d}\theta\right)^\frac{1}{\delta} &= \lim_{\delta \to -\infty} \left(c(\theta')^\delta g(\theta')\int_1^\infty \left(\frac{c(\theta)}{c(\theta')}\right)^\delta \frac{g(\theta)}{g(\theta')} \mathrm{d}\theta\right)^\frac{1}{\delta} \\ &= \lim_{\delta \to -\infty} c(\theta') g(\theta')^\frac{1}{\delta}\left(\int_1^\infty \left(\frac{c(\theta)}{c(\theta')}\right)^\delta \frac{g(\theta)}{g(\theta')} \mathrm{d}\theta\right)^\dfrac{1}{\delta} \\ &= c(\theta') \lim_{\delta \to -\infty} g(\theta')^\frac{1}{\delta}\left(\int_1^\infty \left(\frac{c(\theta)}{c(\theta')}\right)^\delta \frac{g(\theta)}{g(\theta')} \mathrm{d}\theta\right)^\dfrac{1}{\delta} \\ &= c(\theta') \end{align}
It is the very last step that I can't really get my head around. I'm fine with that, as $\delta\to-\infty$, $g(\theta')^\frac{1}{\delta}\to 1$ and also that if $c(\theta)<c(\theta')$ then $\left(\frac{c(\theta)}{c(\theta')}\right)^\delta\to 0$ and if $c(\theta)=c(\theta')$ then $\left(\frac{c(\theta)}{c(\theta')}\right)^\delta\to 1$.
- How can I know that the entire integral goes to unity? This could perhaps be rephrased: how do I show that
$$\lim_{\delta\to-\infty} \left(\int_1^\infty \theta^\delta\mathrm{d}\theta\right)^\frac{1}{\delta}=1?$$
- Also, and more fundamentally, under what circumstances can a limit be factorized so that it is the product of the "factor limits"?