Can somebody prove For all subsets $A$ and $B$ of $X$, $f(A \cup B) = f(A) \cup f(B)$ ?
I believe that it is true, and here is my proof. If somebody sees something I did wrong, can you please explain?
Take any $y∈F (A∪B).$ This means $\exists x∈A∪B : f(x)=y.$ Since $x∈A∪B,$ then $x∈A$ or $x∈B,$ so $y=f(x)∈f(A)$ or $y=f(x)∈f(B),$ so $y∈f(A)∪f(B).$ Thus $f(A)∪f(B)⊆f(A∪B).$
Take any $y∈f(A)∪f(B),$ so $y∈f(A)$ or $y∈f(B).$ Assume $y∈f(A).$ This means $\exists x∈A : y=f(x).$ Now $A ⊆A∪B,$ so $x∈A∪B,$ so $y=f(x)∈f(A∪B).$ This shows $f(A)∪f(B)⊆f(A∪B).$