1

Let $ \mu $ be a $ \sigma $-finite measure space on $(X,s)$. Suppose $ f: X \to [0,\infty]$ be a $ s $-measurable and $ p \in [0,\infty]$.

Show that $$ \int_X f^p \, d\mu = \int_{0}^{\infty} pt^{p-1} \mu({x : f(x) > t}) \, dt $$

This is my homework problem. I have no idea how to do this problem..

Simon S
  • 26,898

1 Answers1

4

Here is a hint to get started: write $$f^p = \int_0^{f} pt^{p-1} \, dt = \int_0^\infty \chi_{\{t \le f\}} pt^{p-1} \, dt$$ and apply Tonelli's theorem.

Umberto P.
  • 54,204