Let $ \mu $ be a $ \sigma $-finite measure space on $(X,s)$. Suppose $ f: X \to [0,\infty]$ be a $ s $-measurable and $ p \in [0,\infty]$.
Show that $$ \int_X f^p \, d\mu = \int_{0}^{\infty} pt^{p-1} \mu({x : f(x) > t}) \, dt $$
This is my homework problem. I have no idea how to do this problem..