There is a large body of psychological evidence that mathematical skill falls into two general categories:
- formal and abstract
- visual and geometric
Most mathematicians excel in one of these domains (e.g., Ramanujan, formal; Desargues, geometry), but a few in both (Cox).
To speak from my own experience: I am certainly a visual/geometer and can visualize curves and forms in space, count faces and vertexes of complex geometric solids in my mind, and so on, but have greater difficulty with "non-geometric" fields such as number theory.
However, when I studied Abstract algebra in the Mathematics Department at MIT (which was taught in a formal, abstract way), I started out no better than average in the class. But then I came across some books that showed how to view groups, rings, and proofs geometrically (with Cayley graphs, among other constructs). Everything became so much easier. I could visualize the proofs, understood core concepts such as right-cosets, inner automorphisms and such visually. Once I understood things visually, I could then "fill in" the rigorous formal proofs and calculations--and I did much better in the class.
I came across a book years later, Nathan Carter's Visual group theory, which was a revelation. I felt as if this book and my cognitive style were perfectly matched.
So my humble recommendation to you is to know your cognitive style and try to cast your mathematical field or domain as much as possible into that style. You'll learn faster, remember more, and enjoy it more.
Now... not all formal math can be "geometrized" easily or naturally, nor geometric math be "algebraicized" easily or naturally. But do what you can!