Let $(X, \mathcal F, \mu)$ be a finite measure space and let $f\in L^\infty(X, \mu)$. Define $\alpha_n=\int_X |f|^n\ d\mu$. Then $$\lim_{n\to \infty}\frac{\alpha_{n+1}}{\alpha_n}=\|f\|_\infty$$
I am a bit lost here. Can somebody please help.
Thanks.
Let $(X, \mathcal F, \mu)$ be a finite measure space and let $f\in L^\infty(X, \mu)$. Define $\alpha_n=\int_X |f|^n\ d\mu$. Then $$\lim_{n\to \infty}\frac{\alpha_{n+1}}{\alpha_n}=\|f\|_\infty$$
I am a bit lost here. Can somebody please help.
Thanks.
Since $f\in L^\infty(X,\mu)$ and $\mu(X) < \infty$, then $f\in L^n(X,\mu)$ for all $n \ge 1$. Since
$$\alpha_{n+1} \le \|f\|_\infty \int_X |f|^n\, d\mu = \|f\|_\infty \alpha_n,$$
we have $$\varlimsup_{n\to \infty} \frac{\alpha_{n+1}}{\alpha_n} \le \|f\|_\infty.$$
On the other hand, since $\alpha_n^{1/n} = \|f\|_n \to \|f\|_\infty$ as $n\to \infty$,
$$\varliminf_{n\to \infty} \frac{\alpha_{n+1}}{\alpha_n} \ge \varliminf_{n\to \infty} \alpha_n^{1/n} = \|f\|_\infty.$$
Therefore $$\lim_{n\to \infty} \frac{\alpha_{n+1}}{\alpha_n} = \|f\|_\infty.$$
Note. We can get $\varliminf_{n\to \infty} \frac{\alpha_{n+1}}{\alpha_n} \ge \|f\|_\infty$ alternatively by applying Holder's inequality with conjugate exponents $n+1$ and $(n+1)/n$. Doing so, we obtain $\alpha_n \le \mu(X)^{1/(n+1)}\alpha_{n+1}^{n/(n+1)}$. Thus
$$\varliminf_{n\to \infty} \frac{\alpha_{n+1}}{\alpha_n} \ge \varliminf_{n\to \infty} \mu(X)^{-1/(n+1)} \alpha_{n+1}^{1/(n+1)} = \lim_{n\to \infty} \|f\|_{n+1} = \|f\|_\infty.$$