Just consider that $$(k!)^\frac{1}{k}=e^{ln(k!)^\frac{1}{k}}=e^\frac{ln(k!)}{k}$$
ie we have $$\lim_{k \to \infty} k!(^\frac{1}{k})= e^{\lim_{k \to \infty}\frac{ln(k!)}{k}}$$
considering just the exponent and using L'Hospital rule you see $$\lim_{k \to \infty} \frac{\ln(1 \bullet 2 \bullet … \bullet k)}{k}=\frac{\ln(2)+\ln(3)+…+\ln(k)}{k}$$
Now bound the top by an integral of $\ln(k)$ i.e., $$ln(2)+ln(3)+…+ln(k) \ge \int_{k=1}^{\infty}\ln(x)dx = k \ln k-k $$ from 2 to $\infty$ and evaluate i.e., , the k on the bottom will cancel. $\frac{k(\ln k-1)}{k}$=$\ln k-1$ which clearly $\rightarrow \infty$ as $k \to \infty$and you will have the limit to be $\infty$, thus your original limit is $$\lim_{k \to \infty}e^k=\infty$$