This can be done directly, without Stirling. Note that after the simplification of the factorials the sequence becomes
$$ f_n = \frac{2n+2}{2n+1}\frac{2n+4}{2n+3}...\frac{4n}{4n-1} $$
Taking $\log$ we see that
$$\log f_n = \log\left(1+\frac{1}{2n+1}\right)+...+\log\left(1+\frac{1}{4n-1}\right)$$
Using the fact that $\log (1+x) \simeq x$ for $x$ close to $0$, we have
$$ \log f_n \simeq \frac{1}{2n+1}+...+\frac{1}{4n-1}$$
Now denote $a_n = \displaystyle \frac{1}{n+1}+...+\frac{1}{2n}$. Using partial sums of a Riemann integral, or the logarithm approximation, we find that $a_n \to \ln 2$.
Now just note that $\displaystyle \frac{1}{2n+1}+...+\frac{1}{4n-1} = a_{2n}-\frac{a_n}{2}$. Therefore
$$ \log f_n \to \frac{\ln 2}{2}$$
which implies that $f_n \to \sqrt{2}$.