Suppose an urn contains one blue and one red ball and that we perform the following random experiment:
- In each round $n\in\mathbb{N}$ we randomly draw a ball
- If the drawn ball is blue, we replace it into the urn together with another blue ball
Let $X_n$ be the fraction of red balls after round $n\in\mathbb{N}_0$ and $\mathcal{F}_n:=\sigma(X_0,\ldots,X_n)$. I want to show that $(X_n)_{n\in\mathbb{N}_0}$ is a $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$-martingale.
Obviously, there are only two possible realisations of $X_n$: $$X_n=\frac{1}{n+1}\;\;\;\text{or}\;\;\;X_n=0$$ Let $Y_n$ be the count of red balls after round $n\in\mathbb{N}_0$. We've got $$\Pr[Y_0=1]=1\;\;\;\text{and}\;\;\;\Pr[Y_n=1]=\frac n{n+1}\;\;\;\text{for all }n\in\mathbb{N}$$ So, $$\Pr\left[X_n=\frac 1{n+1}\right]=\Pr[Y_n=1]=\frac n{n+1}$$ and therefore $$\operatorname{E}[X_n]=\frac n{(n+1)^2}$$
How do we need to proceed?