For $\gamma>0,\delta>0$, How do I evaluate this integral?
$$ I=\int_0^H\frac{e^{i t x} \log\left(\frac{H}{H-x}\right) ^{\frac{1}{\gamma }-1} \left(\left(\frac{k}{H \log \left(\frac{H}{H-x}\right)}\right)^{-1/\gamma }+1\right)^{-\gamma -\delta -1}}{\gamma (H-x)}\,\mathrm{d}x,$$ with gratitude.
I tried the usual tricks, with no result so far.