How to find compact form of the sum $$\sum\limits_{k=0}^m (-1)^k \binom{n}{k} \binom{n}{m-k}$$
It looks like it's connected with Vandermonde's identity but I couldn't get to the solution.
How to find compact form of the sum $$\sum\limits_{k=0}^m (-1)^k \binom{n}{k} \binom{n}{m-k}$$
It looks like it's connected with Vandermonde's identity but I couldn't get to the solution.
Note that, in $(1-x^2)^n=(1-x)^n(1+x)^n=\sum_{k=0}^{n}\binom{n}{k}(-x)^k\cdot \sum_{k=0}^{n}\binom{n}{k}x^k$. Consider the coefficient of $x^m$, for odd $m$, we get $\sum_{k=0}^n (-1)^k\binom{n}{k}\binom{n}{m-k}=0$, for even $m$, we get $\sum_{k=0}^n (-1)^k\binom{n}{k}\binom{n}{m-k}=(-1)^{\frac{m}{2}}\binom{n}{\frac{m}{2}}$.
Since $$ \sum_{k=0}^{n}\binom{n}{k}(-x)^k = (1-x)^n,\tag{1}$$ $$ \sum_{k=0}^{n}\binom{n}{k}x^k = (1+x)^n,\tag{2} $$ we have: $$ \sum_{k=0}^{n}\binom{n}{k}\binom{n}{m-k}(-1)^k = [x^m](1-x)^n(1+x)^n = [x^m](1-x^2)^n \tag{3}$$ hence:
$$ \sum_{k=0}^{n}\binom{n}{k}\binom{n}{m-k}(-1)^k = \left\{\begin{array}{rcl}0&\text{if}& m\text{ is odd}\\(-1)^{\frac{m}{2}}\binom{n}{\frac{m}{2}}&\text{if}& m\text{ is even.}\end{array}\tag{4}\right.$$