Working first on the left hand expression gives
$$\begin{align}
(\lnot P\land\lnot R)\lor(P\land\lnot Q\land\lnot R)
&=\lnot R\land(\lnot P\lor(P\land\lnot Q))\\
&=\lnot R\land((\lnot P\lor P)\land(\lnot P\lor\lnot Q))\\
&=\lnot R\land(\lnot P\lor\lnot Q)
\end{align}$$
Working next on the right hand expression gives
$$\begin{align}
\lnot R\land(Q\implies\lnot(P\land\lnot R))
&=\lnot R\land(\lnot Q\lor\lnot(P\land\lnot R))\\
&=\lnot R\land(\lnot Q\lor\lnot P\lor R)\\
&=(\lnot R\land(\lnot Q\lor \lnot P))\lor(\lnot R\land R)\\
&=\lnot R\land(\lnot Q\lor \lnot P)
\end{align}$$