Let be $f: \mathbb{N}\rightarrow{}\mathbb{N}$ a function. I need to prove that exist a continuous function $g: \beta\mathbb{N}\rightarrow{} \beta\mathbb{N}$ such that $g↾\mathbb{N}=f$.
I have thought in the function $g: \beta\mathbb{N}\rightarrow{} \beta\mathbb{N}$, $g(U)=\left\{{X\subseteq\mathbb{N}: \exists{} A \in{} U \text{ such that } f(A)\subseteq X}\right\}$, but I could not prove that $g↾\mathbb{N}=f$.