Let $X_1,\ldots,X_n$ be a random sample from a pdf $f_{\theta}(x) = \begin{cases} \theta e^{-\theta x}, & x>0 \\ 0, & \text{otherwise} \end{cases}$, where $\theta>0$ is an unknown parameter.
Then, the uniform minimum variance unbiased estimator for $\dfrac{1}{\theta}$ is
(A)$\dfrac{1}{\bar{X_n}}$
(B) $\displaystyle\sum_{i=1}^{n}X_i$
(C) $\bar{X_n}$
(D) $\dfrac{1}{\displaystyle\sum_{i=1}^{n}X_i}$
MY STEPS:
Taking the Expectation, $E_\theta(X)=\displaystyle\int_{0}^{\infty}xf(x)\;dx$
$$E_\theta(X)=\theta\int_0^\infty x e^{-\theta x}\;dx=\dfrac{1}{\theta}=\bar{X_n}$$
Hence, option (C) should be correct.
Did I solve this correctly ? Please help me confirm my solution.