If you place $z=\ln(x)$ the equation can be rewritten as:
$$z=k-e^{e^z}$$
Applying lagrange inversion you will find:
$$z=k+\sum_{n=1} \frac{ (-1)^n}{n!} \left[\left(\frac{d}{du}\right)^{n -1}e^{ne^u}\right]_{u=k}$$
now remembering the Rodrigues representation of Touchard polynomials:
( see http://en.wikipedia.org/wiki/Touchard_polynomials )
$$T_n(u)=e^{-e^{u}} \left(\frac{d}{du}\right)^n e^{e^{u}} $$
you can find a formal solution:
$$z(k)=k+\sum_{n=1} \frac{ (-1)^n}{n!} e^{ne^k} T_{n-1}(k+\ln(n))$$
Therefore replacing $z=\ln(x)$ we find:
$$\ln(x(k))=k+\sum_{n=1} \frac{ (-1)^n}{n!} e^{ne^k} T_{n-1}(k+\ln(n))$$
If a link with Lambert W function or its one parameter generalization exists I don't know.
References
For details about transcendental equations which can be solved by Lagrange series of mixed exponential/hypergeometric polynomials (that is to say transseries) obtained by suitable Rodrigues formulas see:
"Generalization of Lambert W function, Bessel polynomials and transcendental equations" Giorgio Mugnaini
http://arxiv.org/abs/1501.00138 (pdf: http://arxiv.org/pdf/1501.00138v3 )