Note that we have:
$$A=\{(a,b)\in\mathbb{Q}\times\mathbb{Q}~|~\text{Both equations}~a+x=b, b+y=a~\text{have answers in }~\mathbb{Q}\}=\mathbb{Q}\times\mathbb{Q}$$
$$B=\{(a,b)\in\mathbb{Q}\times\mathbb{Q}~|~\text{Both equations}~a\times x=b, b\times y=a~\text{have answers in}~\mathbb{Q}\}=(\mathbb{Q}\setminus \{0\})\times (\mathbb{Q}\setminus \{0\})\cup \{(0,0)\}$$
Now consider:
$$C=\{(a,b)\in\mathbb{Q}\times\mathbb{Q}~|~\text{All equations}~a^x=b, b^y=a, z^a=b, t^b=a~\text{have answers in}~\mathbb{Q}\}$$
$C$ is non-empty trivially because $(1,1)\in C$, is $C$ infinite?