Problem: Find a formula for $\sin(3a)$ in terms of $\sin(a)$ and $\cos(a)$. Use this to calculate $\sin(π/3)$ and $\cos(π/3)$.
My attempt:
\begin{align} \sin(3a) &= \sin(2a + a) = \sin(2a)\cos(a) + \cos(2a)\sin(a) \\ &= \sin(a + a)\cos(a) + \cos(a + a)\sin(a) \\ &= [\sin(a)\cos(a) + \cos(a)\sin(a)]\cos(a) + [\cos(a)\cos(a) - \sin(a)\sin(a)]\sin(a). \end{align}
It can then be simplified to
$$2\sin(a)\cos^2(a) + \sin(a)\cos^2(a) - \sin^3(a) = 3\sin(a)\cos^2(a) - \sin^3(a).$$
My question is this: How am I supposed to use this formula to find $\sin(π/3)$ and $\cos(π/3)$?