We consider the initial value problem
$$\left\{\begin{matrix} y'=y &, 0 \leq t \leq 1 \\ y(0)=1 & \end{matrix}\right.$$
We apply the Euler method with $h=\frac{1}{N}$ and huge number of steps $N$ in order to calculate the approximation $y^N$ of the value of the solution $y$ at $t^N, \ y(t^N)=y(1)=e$. At the following table there are, for all $N$, the errors $|\epsilon^N|=|e-y^N|$, when the calculations are done with single and double precision.
$$\begin{matrix} N & |\epsilon^N|\text{ Single-precision } & |\epsilon^N| \text{ Double-precision } \\ - & - & - \\ 100 & 0.13468 \cdot 10^{-1} & 0.13468 \cdot 10^{-1} \\ 200 & 0.67661 \cdot 10^{-2} & 0.67647 \cdot 10^{-2}\\ 400 & 0.33917 \cdot 10^{-2} & 0.33901 \cdot 10^{-2}\\ 800 & 0.16971 \cdot 10^{-2} & 0.16970 \cdot 10^{-2}\\ 1600 & 0.85568 \cdot 10^{-3} & 0.84898 \cdot 10^{-3} \\ \cdots & & \\ 102400 & 0.65088 \cdot 10^{-4} & 0.13273 \cdot 10^{-4} \\ 204800 & 0.21720 \cdot 10^{-3} & 0.66363 \cdot 10^{-5} \\ 409600 & 0.78464 \cdot 10^{-3} & 0.33181 \cdot 10^{-5} \\ 819200 & 0.20955 \cdot 10^{-2} & 0.16590 \cdot 10^{-5} \\ \dots \end{matrix}$$
We notice that the errors of the calculations of double-precision get approximately half. However, in the case of single-precision, for $N>10^5$ the errors increase! Indeed, for a big enough $N$, the errors in our case tend to $1.71828 \dots$.
Could you explain me why the errors, when the calculations are done in single-precision, increase for $N>10^5$ and why they get approximately half when the calculations are done in double-precision?
Also, how can we calculate the error for a given $N$? For example, if we have $N=10^5$ then $\epsilon^N=|e-y^{10^5}|=\left |e- \left( 1+ \frac{1}{10^5} \right)^{10^5} \right |$. How can we calculate the latter, knowing that the zero of the machine is $10^{-6}$ when we have single precision but $10^{-12}$ when we have double precision?
EDIT: It holds that: $$\ln{\left( 1+ \frac{1}{N}\right)}=\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\left( \frac{1}{N}\right)^n}{n}=\frac{1}{N}- \frac{1}{2N^2}+O(N^{-3})$$ Right? If so, then $N \ln{\left( 1+ \frac{1}{N}\right)}=1-\frac{1}{2N}+O(N^{-2})$, right? $$$$ If so, then how can we find the difference of the real solution with the approximation when we take into consideration that we have single precision and how when we take into consideration that we have double precision?