I want to show that $$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx = \frac{a_0\alpha_0}{2} + \sum_{n=1}^{\infty} (a_n\alpha_n + b_n\beta_n)$$ where $f,g: [-\pi,\pi] \to \mathbb{R}$ are integral functions and that the Fourier series of $f$ and $g$ are uniformly convergent to $f,g$ respectively.
$a_0,a_n,b_n,\alpha_0,\alpha_n,\beta_n$ are the fourier coefficients of $f,g$ respectively.
I thought we could simply expand the LHS, simplify, and then show equality. I start by multiplying $f(x)g(x)$ via their respective Fourier series.
$$a_0\alpha_0 + a_0(\sum_{n=1}^{\infty} \alpha_n\cos(nx) + \beta_n\sin(nx))+\alpha_0(\sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx)) + (\sum_{n=1}^{\infty} \alpha_n\cos(nx) + \beta_n\sin(nx))(\sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx))$$
How do I simplify this? Because we have uniform convergence, we can switch the places of the Sigma and Integral symbols yeah? Even then though..