This question is extremely similar to your other question.
We have:
$$S=\sum_{n\geq 0}\frac{1}{(48n+1)(48n+47)}=\sum_{n\geq 0}\frac{1}{(48n+24)^2-23^2}=\frac{\pi}{4\cdot 23\cdot 24}\tan\frac{23 \pi}{48},$$
hence
$$ S = \frac{\pi}{2208}\cot\frac{\pi}{48} $$
and since $\cot\frac{\pi}{6}=\sqrt{3}$ while $\cot\frac{x}{2}=\cot x+\sqrt{1+\cot^2 x}$, we have:
$$\cot\frac{\pi}{12}=2+\sqrt{3},\quad \cot\frac{\pi}{24}=2+\sqrt{3}+2\sqrt{2+\sqrt{3}}$$
and:
$$\cot\frac{\pi}{48}=2+\sqrt{3}+2\sqrt{2+\sqrt{3}}+2\sqrt{4+2 \sqrt{3}+2 \sqrt{2+\sqrt{3}}+\sqrt{3 \left(2+\sqrt{3}\right)}}$$
is an algebraic number over $\mathbb{Q}$ with degree $8$ and minimal polynomial
$1+16 x+4 x^2-112 x^3+6 x^4+112 x^5+4 x^6-16 x^7+x^8$.