2

Let be $G$ a non-empty set and $*$ one law of composition inner. Suposse that $*$ is:

1) $\forall a, b, c \in G$ $a*(b*c)=(a*b)*c$;

2) $\exists e \in G$; $a*e=a=e*a$, $\forall a \in G$

3) $\forall a \in G $ $ \exists a' \in G$ ; $a'*a=e$. (opposite only the left )

Show that $G$ is group.

Pitágoras
  • 615
  • 1
  • 5
  • 14

1 Answers1

4

Given $a$ pick $a'$ with $a'*a=e.$ Then using this $a'$ choose $a''$ for which $a''*a'=e.$ Now note that $$a*a'=e*(a*a')=(a''*a')*(a*a')=\\ a''*(a'*a)*a'=a''*e*a'=a''*a'=e.$$

coffeemath
  • 30,190
  • 2
  • 34
  • 53