Let be $G$ a non-empty set and $*$ one law of composition inner. Suposse that $*$ is:
1) $\forall a, b, c \in G$ $a*(b*c)=(a*b)*c$;
2) $\exists e \in G$; $a*e=a=e*a$, $\forall a \in G$
3) $\forall a \in G $ $ \exists a' \in G$ ; $a'*a=e$. (opposite only the left )
Show that $G$ is group.