Write $m=\prod_{i=1}^s p_i^{r_i}$ with $p_i$'s distinct prime numbers. Then $\text{GL}(n, \mathbb{Z} / m\mathbb{Z})$ is simply the automorphism group of the additive group $\mathbb{Z}_m^n\simeq\oplus_{i=1}^s\mathbb{Z}_{p_i^{r_i}}^n$. First notice that all automorphisms of $\oplus_{i=1}^s\mathbb{Z}_{p_i^{r_i}}^n$ fix every $\mathbb{Z}_{p_i^{r_i}}^n$. Thus we get $\text{GL}(n, \mathbb{Z} / m\mathbb{Z})\simeq\text{Aut}(\mathbb{Z}_m^n)\simeq\text{Aut}(\oplus_{i=1}^s\mathbb{Z}_{p_i^{r_i}}^n)\simeq\oplus_{i=1}^s\text{Aut}(\mathbb{Z}_{p_i^{r_i}}^n)$. Thus the question is reduced to the case $m=p^r$ with a certain prime number $p$.
The calculation the cardinality of $\text{GL}(n, \mathbb{Z} / p^r\mathbb{Z})$ is very similar to the case of $\text{GL}(n, \mathbb{F}_p)$. Let $\{e_1,e_2,...,e_n\}$ be a basis. View $\mathbb Z_{p^r}^n$ as a free $\mathbb Z_{p^r}$-module. For an endomorphisme $\varphi$ over $\mathbb Z_{p^r}^n$ to be a automorphism. $\varphi(e_1)$ can be arbitrary element of order $p^n$, so there are $p^{nr}-p^{n(r-1)}$ many choices; then $\varphi(e_2)$ must be independent with $\varphi(e_1)$, so there $(p^{nr}-p^{n(r-1)})-(p^r-p^{(r-1)})$ many choices, and so on. Thus cardinality equals to $[p^{nr}-p^{n(r-1)}][(p^{nr}-p^{n(r-1)})-(p^r-p^{(r-1)})][(p^{nr}-p^{n(r-1)})-(p^{2r}-p^{2(r-1)})]\cdots[(p^{nr}-p^{n(r-1)})-(p^{(n-1)r}-p^{(n-1)(r-1)})]$.