$$S = \sum_{x=1}^{\infty} \frac{\sin(x)}{x}$$
Using partial summation. Obviously,
$$S = \lim_{n \to \infty} \sum_{x=1}^{n} \frac{\sin(x)}{x}$$
Partial Summation:
\begin{align*} \sum_{n=1}^{N} a(n) f(n) & = \sum_{n=1}^{N} f(n) (A(n)- A(n-1)) = \sum_{n=1}^{N} A(n) f(n) - \sum_{n=1}^{N} A(n-1) f(n)\\ & = \sum_{n=1}^{N} A(n)f(n) - \sum_{n=0}^{N-1} A(n) f(n+1)\\ & = A(N)f(N) - A(0) f(1) - \sum_{n=1}^{N-1} A(n) (f(n+1)-f(n)) \end{align*}
But how do I apply it? What is $A(n)$? I am confused?