Hint $\ \ (a\!+\!b,\ \color{darkorange}{a^2\!+\!b^2})\, =\, (a\!+\!b,\,\overbrace{\color{#c00}{2a^2}, \ \color{blue}{2ab}, \ \color{#c0f}{2b^2}}^{\textstyle 2\:\!\color{#0a0}{(a,b)}^2})\,$ [$=\, (a\!+\!b,\:\!2)\ $ if $\ \color{#0a0}{(a,b)=1}$]
by noting: $\ \underbrace{\color{#888}{b^2\!-\!a^2}+\color{#c00}{2a^2} = (\color{#888}{a\!+\!b})^2\!-\color{blue}{2ab} = \color{#c0f}{2b^2}+\color{#888}{a^2\!-\!b^2}}_{\textstyle {\rm all} = \color{darkorange}{a^2\!+b^2}}\ $ & $\ \color{#888}{\rm grays}\equiv 0\pmod{\!a\!+\!b}$