Let us consider the application$$\phi:\mathbb{R}\left[X\right]\ni P\longmapsto P\left(i\right)\in\mathbb{C}.$$
I let you check that this is a surjective homomorphism.
Now we want to determine its kernel. We have $\phi\left(X^{2}+1\right)=i^{2}+1=0$
whence $$\left(X^{2}+1\right)\mathbb{R}\left[X\right]\subset\ker\phi.$$
The difficult part is to show the converse. If $Q\in\ker\phi$, let us consider the euclidian division of $Q$
by $X^{2}+1$
: we write$$Q=\left(X^{2}+1\right)R+S$$
with $Q,S\in\mathbb{R}\left[X\right]$
and with $\deg S\leq\deg\left(X^{2}+1\right)-1=1$. Hence, $S=aX+b$
with $a,b\in\mathbb{R}$. Now, since $Q\in\ker\phi$ and since $\phi$ is a homomorphism, we have$$0=\phi\left(Q\right)=\phi\left(\left(X^{2}+1\right)R+S\right)=\phi\left(X^{2}+1\right)\phi\left(R\right)+\phi\left(S\right)=\phi\left(S\right)=ai+b$$
and thus $a=b=0$, i.e. $S=0$ and $Q\in\left(X^{2}+1\right)\mathbb{R}\left[X\right].$
By the factorization theorem, we get$$\mathbb{R}\left[X\right]/\left(X^{2}+1\right)\mathbb{R}\left[X\right]\simeq\mathbb{C}.$$
The fact that the ideal $\left(X^{2}+1\right)\mathbb{R}\left[X\right]$
is maximal comes form the fact that $\mathbb{C}$
is a field.