Show that $\mu: \widetilde{I} \cap(0,1] \to [0,\infty] $ be defined by $\mu(a,b]:=\bigg\{b-a$ if a $\ne 0$, $0\lt a \lt b \le 1$ $\bigg\}$ and $+\infty$ otherwise, is finitely additive, where $\widetilde{I} \cap(0,1]$ is the class of all left open right closed intervals in $(0,1]$ . Is $\mu$ countably additive also??
I could show that $\mu$ is not countably additive by taking $I_{n}=\left(\frac{1}{n+1},\frac{1}{n}\right]$. Then $\bigcup_{n=1}^{\infty}\left(\frac{1}{n+1},\frac{1}{n}\right]=(0,1]$. But $\mu\left(\frac{1}{n+1},\frac{1}{n}\right]=\frac{1}{n}-\frac{1}{n+1}$. Hence $$\sum_{k=1}^{n}\left(\frac{1}{k+1},\frac{1}{k}\right]=1-\frac{1}{n+1}$$. Thus $$\lim_{n \to \infty}\sum_{k=1}^{n}\left(\frac{1}{k+1},\frac{1}{k}\right]=\lim_{n \to \infty}\left(1-\frac{1}{n+1}\right)=1$$ where as $\mu (0,1]=+\infty$.
But I am not sure how to prove the finite additiveness.