You can calculate eigenvectors of a matrix with eig() function like this:
[eigenvectors, eigenvalues] = eig (matrix)
But I can't manage to understand why the eigenvector output is in some kind of unitary module format.
Example:
Matrix: $$\left(\begin{matrix} 2 & -4\\ -1 & -1\end{matrix}\right)$$
Eigenvalues output of the function: $$\left(\begin{matrix} 3 & 0\\ 0& -2\end{matrix}\right)$$
(I get it, -2 and 3 are the eigenvalues, they are in the main diagonal)
Eigenvectors output of the function: $$\left(\begin{matrix} 0.97014& 0.70711\\ -0.24254 & 0.70711\end{matrix}\right)$$ Why those values instead of the eigenvectors?: $$\left(\begin{matrix} -4\\ 1\end{matrix}\right)$$ and
$$\left(\begin{matrix} 1\\ 1\end{matrix}\right)$$
A=sym([2 -4;-1 -1])[V,D]=eig(A). This usessym/eig(documentation). – horchler Feb 04 '15 at 21:22A=sym('[4,1;-1,-1]'), which is generally deprecated syntax in Matlab. In any case I recommend that you read Octave's documentation. – horchler Feb 05 '15 at 01:10