Prove $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$ using Induction
My proof so far:
Let $P(n)$ be $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$
Base Case
$P(1):$
LHS = $1^3 = 1$
RHS = $(1)^2 = 1$
Since LHS = RHS, therefore base case holds
Induction Hypothesis
Let $n \in \mathbb{N}$ be arbitrary
Assume $P(n)$ holds
Induction Step
Prove $P(n+1)$ holds:
$$ \begin{align} & 1^3 + 2^3 + \cdots + \;n^3 + (n+1)^3 \\ = {} & (1 + 2 + \cdots + \; n)^2 + (n+1)^3 \text{ (by Induction Hypothesis)} \\ = {} & (1 + 2 + \cdots + \; n)^2 + (n^3 + 3n^2 + 3n + 1) \end{align} $$
This is where I get stuck. I don't know how to prove that my last step is equivalent to:
$$(1 + 2 + \cdots + \;n + (n+1))^2$$