Define the characteristic function of set $A$ to be $${\chi _A}(x) = \left\{ {\begin{array}{*{20}{c}} 1&{x \in A}\\ 0&{x \notin A} \end{array}} \right..$$
For any given collection of sets ${A_n}$, how to prove $$\mathop {\underline {\lim } }\limits_{n \to \infty } {\chi _{{A_n}}}(x) = {\chi _{\mathop {\underline {\lim } }\limits_{n \to \infty } {A_n}}}(x)$$ or in anothor words, $$\mathop {\lim }\limits_{n > 1} \mathop {\inf }\limits_{k \ge n} {\chi _{{A_k}}}(x) = {\chi _{\mathop {\lim }\limits_{n > 1} \bigcap\limits_{k = n}^\infty {{A_k}} }}(x)$$ or in anothor words, $$\mathop {\sup }\limits_{n > 1} \mathop {\inf }\limits_{k \ge n} {\chi _{{A_k}}}(x) = {\chi _{\bigcup\limits_{n = 1}^\infty {\bigcap\limits_{k = n}^\infty {{A_k}} } }}(x)$$
And some intuitive explanation behind this equation?