Evaluation of $\displaystyle \int\frac{x^3+3x+2}{(x^2+1)^2\cdot (x+1)}\;,$ Can we solve it without Using Partial fraction.
$\bf{My\; Try::}$ Let $\displaystyle I = \int\frac{x^3+x+2x+2}{(x^2+1)^2\cdot (x+1)}dx = \int\frac{x(x^2+1)+2(x+1)}{(x^2+1)^2(x+1)}dx$
So Integral $\displaystyle I = \int\frac{x}{(x+1)(x^2+1)}dx+2\int\frac{1}{(x^2+1)^2}dx = \int\frac{(x+1)-1}{(x+1)(x^2+1)}dx+2\int\frac{1}{(x^2+1)^2}dx$
So Integral $\displaystyle I = 3\int\frac{1}{(x^2+1)^2}dx-\int\frac{1}{(x+1)(x^2+1)}dx$
Let $\displaystyle I = J-K\;,$ Where $\displaystyle J = 3\int\frac{1}{(x^2+1)^2}dx$ and $\displaystyle J = \int \frac{x}{(x+1)(x^2+1)}$ Now For Calculation of $\displaystyle J = 3\int\frac{1}{(x^2+1)^2}dx\;,$ Let $x = \tan \theta$ and $dx = \sec^2 \theta d\theta$
So Integral
$\displaystyle J = 3\int\frac{\sec^2 \theta}{\sec^4 \theta }d\theta = \frac{3}{2}\int (1+\cos 2\theta )d\theta = \frac{3}{2}\theta + \frac{3}{4}\sin 2\theta = \frac{3}{2}\tan^{-1}\left(x\right)+\frac{3}{2}\frac{x}{1+x^2}$
Now How can I solve $\displaystyle K = \int\frac{1}{(x+1)(x^2+1)}dx = \int\frac{1}{1+\tan \theta}d\theta = \int\frac{\cos \theta}{\sin \theta + \cos \theta }d\theta$
How can I solve after that, Help me
Thanks