If the equations:
$$A^2+B^2+C^2=X^3+Y^3$$
For ease of calculation, let's make a replacement.
$$t=(a^2+r^2)(z^2-k^2)+2j^2-2nj-n^2$$
$$s=2z(2n-j)$$
$$q=(a^2+r^2)(z^2-k^2)+2j^2-4nj+3n^2$$
$$p=2k(2n-j)$$
$$y=(a^2+r^2)(z^2-k^2)+2nj-n^2$$
Where $a,r,z,k,n,j$ - integers asked us. You can use numbers if you reduce them to common divisor. Knowing these numbers can be written solutions.
$$A=a(s((a^2+r^2)p^2-y^2+qy-q^2)+tp(2q-y))$$
$$B=r(s((a^2+r^2)p^2-y^2+qy-q^2)+tp(2q-y))$$
$$C=t(y^2+q^2-qy-(a^2+r^2)p^2)+(a^2+r^2)ps(2q-y)$$
$$X=q^2+(a^2+r^2)p^2-y^2$$
$$Y=y(2q-y)$$
You can also write another formula, but it will look more bulky. It is necessary to consider that may need to be divided into common divisor. $(A,B,C)$ on $l^3$ . $(X,Y)$ on $l^2$