8

Consider a commutative diagram of $R$-modules

$$\require{AMScd}\begin{CD} @. 0 @. 0 @. 0\\ @. @VVV @VVV @VVV\\ 0@>>>A_1@>a>>A_2@>a'>>A_3@>>>0\\ @. @VVfV@VVgV @VVhV\\ 0@>>>B_1@>b>>B_2@>b'>>B_3@>>>0\\ @. @VVf'V @VVg'V @VVh'V\\ 0@>>>C_1@>c>>C_2@>c'>>C_3@>>>0\\ @. @VVV @VVV @VVV\\ @. 0 @. 0 @. 0\\ \end{CD}$$

such that the three rows and the first and third columns are short exact sequences.

I am looking for a counterexample to the claim that the middle column is exact.

I know it to be true that if $\text{Im } g \subset \ker g',$ then the middle column is in fact exact.

I was able to show via diagram chase that if $C_1$ is $0$, then the middle column is exact.

Ken
  • 2,932
Doug
  • 2,907

1 Answers1

13

$$\require{AMScd}\begin{CD} 0@>>>R@>1>>R\\ @VVV@VV\begin{pmatrix}1\\0\end{pmatrix}V @VV1V\\ R@>\begin{pmatrix}1\\1\end{pmatrix}>>R^2@>\begin{pmatrix}1&-1\end{pmatrix}>>R\\ @VV1V @VV\begin{pmatrix}1&0\end{pmatrix}V @VVV\\ R@>1>>R@>>>0\\ \end{CD}$$