To prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$ is true, first I started calculating the integral of the left indefinitely $$ \int {x\,f(\sin x)\,\,dx} $$ using substitution: $$ \sin x = t,\quad x = \arcsin t, \quad {dx = \frac{{dt}}{{\sqrt {1 - {t^2}} }}}$$ is obtained: $$ \int {x\,f(\sin x)\,\,dx} = \int {\arcsin t \cdot f(t) \cdot \frac{{dt}}{{\sqrt {1 - {t^2}} }}}$$ $$ \qquad\quad = \int {\frac{{\arcsin t\,dt}}{{\sqrt {1 - {t^2}} }} \cdot f(t)} $$ Then using integration by parts: $$ \begin{array}{*{20}{c}} {u = f(t)},&{dv = \frac{{\arcsin t\,dt}}{{\sqrt {1 - {t^2}} }}} \\ {du = f'(t)\,dt},&{v = \frac{{{{(\arcsin t)}^2}}}{2}} \end{array} $$ then: \begin{align*} \int {x\,f(\sin x)\,\,dx} &= f(t) \cdot \frac{{{{(\arcsin t)}^2}}}{2} - \int {\frac{{{{(\arcsin t)}^2}}}{2}} \cdot f'(t)\,dt \\ &= f(\sin x) \cdot \frac{{{x^2}}}{2} - \int {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \\ \end{align*} Now, evaluating from 0 to $\pi$ \begin{align} \int_0^\pi {x\,f(\sin x)} \,dx & = \left[ {f(t) \cdot \frac{{{x^2}}}{2}} \right]_0^\pi - \int_0^\pi {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \\ \int_0^\pi {x\,f(\sin x)} \,dx & = f(0) \cdot \frac{{{\pi ^2}}}{2} - \int_0^\pi {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \qquad ..[1] \\ \end{align} On the other hand, doing the same process with the integral on the right side I get: \begin{equation}\int_0^\pi {f(\sin x)} \,dx = f(0) \cdot \pi - \int_0^\pi {x \cdot f'(\sin x)\,\cos x\,dx} \qquad ..[2] \end{equation} And even here I do not have enough data to say that equality $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$ is true.
Can anyone suggest me what to do with the equalities [1] and [2]?
Thanks in advance.