2

Is $(g \circ f)^{-1} (x)$ equal to $(f^{-1}\circ g^{-1})(x)$ or not?

copper.hat
  • 178,207
dj1
  • 23

1 Answers1

0

Yes. $\DeclareMathOperator\id{id}$(At least if $f$ and $g$ are invertible.) In general in a group we have $(ab)^{-1}=b^{-1}a^{-1}$. Applying this to $(\langle f,g\rangle,\circ)$ yields $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$.
One can also verify directly that $(g\circ f)\circ(f^{-1}\circ g^{-1})=\id=(f^{-1}\circ g^{-1})\circ(g\circ f)$.

Bart Michels
  • 26,985
  • 6
  • 59
  • 123
  • $\DeclareMathOperator\id{id}$ 1) For two (bijective) functions $f:A\to B$ and $g:B\to C$, there is no such group as your "$\langle f,g\rangle$". 2) $(g\circ f)\circ(f^{-1}\circ g^{-1})=\id=(f^{-1}\circ g^{-1})\circ(g\circ f)$ makes no sense either. Instead, write $(g\circ f)\circ(f^{-1}\circ g^{-1})=\id_C$ and $(f^{-1}\circ g^{-1})\circ(g\circ f)=id_A$. – Anne Bauval Apr 06 '24 at 13:52