Consider the reciprocal $\displaystyle\prod_{i = 0}^{\infty}\dfrac{p_i}{p_i-1} = \prod_{i = 0}^{\infty}\dfrac{1}{1-\frac{1}{p_i}} = \prod_{i = 0}^{\infty}\sum_{j = 0}^{\infty}\dfrac{1}{p_i^j}$.
This can be written out as:
$\left(\dfrac{1}{1}+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\cdots\right)\left(\dfrac{1}{1}+\dfrac{1}{3^1}+\dfrac{1}{3^2}+\cdots\right)\left(\dfrac{1}{1}+\dfrac{1}{5^1}+\dfrac{1}{5^2}+\cdots\right) \cdots$
Each integer $n$ has a unique prime factorization $n = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}$. So, when you multiply out that product, there is exactly one $\dfrac{1}{n} = \dfrac{1}{p_1^{e_1}}\dfrac{1}{p_2^{e_2}} \cdots \dfrac{1}{p_r^{e_r}}$ term for each integer $n$.
Therefore, $\displaystyle\prod_{i = 0}^{\infty}\sum_{j = 0}^{\infty}\dfrac{1}{p_i^j} = \sum_{n = 1}^{\infty}\dfrac{1}{n}$ which diverges to $+\infty$. Hence, the reciprocal $\displaystyle\prod_{i = 0}^{\infty}\dfrac{p_i-1}{p_i}$ is $0$.
Note: This is a specific case of the more general Euler Product: $\displaystyle \prod_{i = 0}^{\infty}\dfrac{1}{1-\frac{1}{p_i^s}} = \sum_{n = 1}^{\infty}\dfrac{1}{n^s}$.